ateship during his stay at Arizona State University. The diffractometer was obtained and upgraded with financial assistance from the National Science Foundation.

References

Chamberlain, L. R., Durfee, L. D., Fanwick, P. E., Kobriger, L., Latesky, S. L., McMullen, A. K., Rothwell, I. P., Folting, K., Huffman, J. C., Streib, W. E. \& Wang, R. (1987). J. Am. Chem. Soc. 109, 390-402.

Coucouvanis, D., Hadjikyriacou, A. \& Kanatzidis, M. G. (1985). J. Chem. Soc. Chem. Commun. pp. 1224-1225.

Erker, G., Dorf, U., Krueger, C. \& Tsay, Y.-H. (1987). Organometalics, 6, 680-682.
Femec, D. A., Silver, M. E. \& Fay, R. C. (1989). Inorg. Chem. 28, 2789-2796.
Hey, E., Lappert, M. F., Atwood, J. L. \& Bott, S. G. (1987). J. Chem. Soc. Chem. Commun. pp. 421-422.
Matchett, S. A., Norton, J. R. \& Anderson, O. P. (1988). Organometallics, 7, 2228-2236.
Sheldrick, G. M. (1988). SHELXTL-Plus. Release 3.43 for Nicolet $R 3 \mathrm{~m} / V$ crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Silver, M. E., Eisenstein, O. \& Fay, R. C. (1983). Inorg. Chem. 22, 759-770.

Acta Cryst. (1991). C47, 1814-1816

A Mixed Bridged Trinuclear Copper(II) Complex with Diethylaminoethanolato and 3-Methylbenzoato Ligands

By Stefan Gehring and Wolfgang Haase*
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt, Germany

and Helmut Paulus
Fachbereich Materialwissenschaft, Fachgebiet Strukturforschung, Technische Hochschule Darmstadt, Germany
(Received 21 November 1990; accepted 31 January 1991)

Abstract

Bis}[\mu\)-2-(diethylamino)ethanolato- $O, N]$ -bis(methanol)-bis (μ-3-methylbenzoato-O, O^{\prime})-bis(3-methylbenzoato- O)-tricopper(II), $\quad\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}\right)_{2}-\right.$ $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}$], $M_{r}=1027 \cdot 6$, monoclinic, $P 2_{1} / c$, $a=8.302$ (2), $b=30.794$ (8), $c=10.688$ (3) $\AA, \beta=$ $110 \cdot 12(1)^{\circ}, \quad V=2565 \cdot 7 \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.330 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $1.231 \mathrm{~mm}^{-1}, F(000)=1074, T=297 \mathrm{~K}$. Final $R=$ 0.059 for 3145 independent reflections $\left[F_{o}>2 \sigma\left(F_{o}\right)\right.$]. Linear Cu_{3} arrangement; adjacent copper centres are bridged by a bidentate carboxylato group and an aminoethanolato oxygen atom.

Introduction. Trinuclear copper(II) complexes with benzoato/diethylaminoethanolato bridging, $\left[\mathrm{Cu}_{3}-\right.$ $\left.\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{O}\right\}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]$ (Haase \& Gehring, 1985) or benzoato/dibutylaminoethanolato bridging, $\quad\left[\mathrm{Cu}_{3}\left\{\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{O}\right\}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{4}-\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{2}$] (Muhonen, Pajunen \& Hämäläinen, 1980), are systems with a quartet spin ground state due to a ferromagnetic exchange coupling in the $\mathrm{Cu}^{\mathrm{II}}-\mathrm{RO} / \mathrm{RCO}_{2}-\mathrm{Cu}^{\mathrm{II}}$ moiety (Gehring \& Haase, 1990). As part of these investigations (Gehring, 1990) we synthesized new Cu_{3} complexes with methylsubstituted benzoato ligands as reported in a prelimi-

[^0]0108-2701/91/091814-03\$03.00
nary communication (Gehring, Paulus, Haase, Bill \& Trautwein, 1990). The present work deals with the molecular structure of the 3-methyl derivative.

Experimental. $\mathrm{Cu}_{2} \mathrm{CO}_{3}(\mathrm{OH})_{2}(0.05 \mathrm{~mol})$ was stirred into a melt of 3 -methylbenzoic acid (0.2 mol) to prepare the starting material $\mathrm{Cu}\left(3-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{2}$. The reaction was completed by further heating of the powdered mixture to $423-443 \mathrm{~K}(0 \cdot 5 \mathrm{~h})$. Residual acid was removed by washing with dichloromethane or ether. For purification, the crude product (50 g) was treated with acetone (analytical grade, 300 ml) in a Soxhlet extractor and dried in vacuo.

Diethylaminoethanol $(3.90 \mathrm{mmol}$ in 5 ml methanol) was added to a methanolic suspension of Cu -$\left(3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{2}(1.95 \mathrm{mmol}$ in 50 ml$)$. After filtration blue single crystals precipitated from the turquoise solution standing at 279 K . Elemental analysis, calculated values for $\mathrm{Cu}_{3}\left(\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{12}\right)$ in parentheses: C 53.76 (53.76), H 6.08 (6.28), N 2.75 (2.73)\%.

For data collection a single crystal with the approximate dimensions $0.3 \times 0.4 \times 1 \mathrm{~mm}$ was sealed in a Lindemann capillary containing mother liquor. Lattice constants determined on a StoeSiemens AED2 diffractometer by a least-squares treatment of the setting angles of 56 reflections in the © 1991 International Union of Crystallography
range $14<2 \theta<43^{\circ}$. Intensities of 6071 reflections with $0 \leq h \leq 8,-33 \leq k \leq 16,-11 \leq l \leq 10,3 \leq 2 \theta$ $\leq 45^{\circ}$ were measured in the $\omega: 2 \theta=1: 1$ mode. Standard intensities $(2 \overline{5} \overline{3}, 25 \overline{3}, 202)$ monitored after each hour of measuring time showed no evidence of crystal decay. The data were corrected for Lorentz and polarization effects; numerical absorption correction led to 3145 unique reflections with $F_{o}>2 \sigma\left(F_{o}\right), R_{\text {int }}$ $=0.018$ (SHELX76; Sheldrick, 1976).
Structure solution (direct methods) and refinement with SHELX76 (Sheldrick, 1976). Anisotropic temperature factors for non-hydrogen atoms, geometrically calculated positions for aromatic and aliphatic hydrogen atoms with $\mathrm{C}-\mathrm{H}=0.96 \AA, U_{\text {iso }}(\mathrm{H}) \simeq U_{\text {eq }}$ of the corresponding carbon atom, fixed. The position of the methanolic $\mathrm{H}(\mathrm{O} 6)$ was localized in a difference Fourier map and fixed. Final values of R $=0.059, w R=0.055, w=k\left[\sigma\left(F_{o}\right)^{2}\right]^{-1}, k$ determined by least squares. 302 parameters, maximum residual electron densities $0.79,-0.72 \mathrm{e}^{-3} .|\Delta / \sigma|_{\text {mean }}=$ 0.06 .

Scattering factors for Cu^{0} were taken from International Tables for X-ray Crystallography (1974, Vol. IV), others as supplied by $S H E L X 76$.

Atomic coordinates and selected bond distances and angles are given in Tables 1 and 2.* Fig. 1 shows the molecular structure drawn with PLUTO (Motherwell \& Clegg, 1978). Best planes were calculated with a locally written program (Costines, Foitzik \& Gehring, 1984).

Discussion. The three copper atoms form a linear arrangement with $\mathrm{Cu}(2)$ on the inversion centre. The terminal copper atoms $\mathrm{Cu}(1)$ and $\mathrm{Cu}\left(\mathrm{I}^{\prime}\right)$ [symmetry code: (') $1-x, 1-y, 1-z]$ have a distorted square planar geometry coordinated by $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(4)$ and $\mathrm{N}(1)$ forming the best plane A with deviations of $0 \cdot 16,-0.16,0.15$ and $-0.15 \AA$. The $\mathrm{Cu}(1)$ position is $0 \cdot 10 \AA$ above A. For the central $\mathrm{Cu}(2)$ a distorted octahedral geometry is realized with $\mathrm{O}(1), \mathrm{O}\left(1^{\prime}\right)$, $\mathrm{O}(3)$ and $\mathrm{O}\left(3^{\prime}\right)$ as basal plane B and the methanolic oxygen atoms $O(6)$ and $O\left(6^{\prime}\right)$ as axial ligands.

Adjacent copper centres are bridged by an aminoethanol oxygen ligand $[\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)=$ $\left.111.7(2)^{\circ}\right]$ and a bidentate carboxylato group $\mathrm{O}(2)-$ $\mathrm{C}(3)-\mathrm{O}(3)$ leading to a mixed-bridged non-coplanar coordination geometry with $\mathrm{Cu}(1)-\mathrm{Cu}(2)=$ $3 \cdot 173$ (1) \AA. The non-coplanarity can be described by the dihedral angle $\varphi_{A B}=61 \cdot 0^{\circ}$ formed between the best plane A and the plane B. Correspondingly, the six-membered ring $-\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{O}(3)-$

[^1]Table 1. Positional atomic parameters with e.s.d.'s in parentheses and equivalent isotropic thermal parameters

	$U_{\mathrm{eq}}=\frac{10^{3}}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*}\left(\mathbf{a}_{i} \mathbf{a}_{j}\right)$.			
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cu}(1)$	0.3564 (1)	0.5949 (1)	0.4125 (1)	46
$\mathrm{Cu}(2)$	0.5	0.5	0.5	45
O(1)	0.3382 (4)	0.5444 (1)	$0 \cdot 5080$ (3)	47
O(2)	0.5911 (5)	0.6054 (1)	0.5287 (4)	58
$\mathrm{O}(3)$	0.6863 (5)	0.5389 (1)	0.6032 (4)	56
$\mathrm{O}(4)$	0.3708 (5)	0.6438 (1)	0.3062 (4)	61
$\mathrm{O}(5)$	0.5459 (6)	0.6131 (1)	0.2149 (4)	77
$\mathrm{O}(6)$	0.5092 (6)	0.5331 (1)	0.2922 (4)	80
N(1)	0.0977 (6)	0.5921 (2)	0.3314 (5)	57
C(1)	0.1685 (7)	0.5339 (2)	0.4975 (7)	64
C(2)	0.0542 (10)	0.5683 (4)	0.4320 (12)	187
C(3)	0.6985 (7)	0.5795 (2)	0.6023 (5)	50
C(4)	0.8589 (7)	0.5998 (2)	0.6984 (5)	51
C(5)	0.8801 (8)	0.6433 (2)	0.7113 (6)	68
C(6)	1.0272 (11)	0.6617 (3)	0.7975 (8)	85
C(7)	1.1519 (12)	0.6360 (4)	0.8719 (9)	120
C(8)	$1 \cdot 1383$ (11)	0.5925 (3)	0.8622 (9)	127
$\mathrm{C}(9)$	0.9899 (9)	0.5741 (3)	0.7741 (7)	94
C(10)	0.4673 (7)	0.6449 (2)	0.2361 (6)	53
C (11)	0.4837 (7)	0.6876 (2)	0.1753 (5)	50
$\mathrm{C}(12)$	0.3899 (9)	0.7229 (2)	0.1910 (6)	71
C(13)	0.4049 (11)	0.7624 (2)	0.1343 (7)	89
$\mathrm{C}(14)$	0.5145 (11)	0.7660 (3)	0.0636 (8)	95
C(15)	0.6112 (9)	0.7313 (3)	0.0488 (7)	83
$\mathrm{C}(16)$	0.5931 (8)	0.6921 (2)	$0 \cdot 1053$ (6)	64
$\mathrm{C}(17)$	0.4678 (14)	0.5063 (3)	0.1813 (7)	111
C(18)	0.0056 (10)	0.6328 (3)	0.3106 (12)	161
C(19)	0.0543 (12)	0.6686 (3)	0.3963 (9)	112
C(22)	0.0607 (10)	0.5700 (4)	$0 \cdot 1996$ (11)	197
C(23)	-0.1220 (15)	0.5616 (5)	0.1181 (13)	279
C(26)	1.0520 (13)	0.7090 (3)	0.8093 (11)	146
C(27)	0.7385 (11)	0.7362 (3)	-0.0201 (9)	133

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	$3.173(1)$	$\mathrm{Cu}(2)-\mathrm{O}(3)$	$1.968(4)$	
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.894(3)$	$\mathrm{Cu}(2)-\mathrm{O}(6)$	$2.468(4)$	
$\mathrm{Cu}(1)-\mathrm{O}(2)$	$1.944(4)$	$\mathrm{O}(2)-\mathrm{C}(3)$	$1.253(7)$	
$\mathrm{Cu}(1)-\mathrm{O}(4)$	$1.915(4)$	$\mathrm{O}(3)-\mathrm{C}(3)$	$1.253(7)$	
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.022(5)$	$\mathrm{O}(4)-\mathrm{C}(10)$	$1.271(7)$	
$\mathrm{Cu}(1)-\mathrm{O}(6)$	$2.830(5)$	$\mathrm{O}(5)-\mathrm{C}(10)$	$1.241(7)$	
$\mathrm{Cu}(2)-\mathrm{O}(1)$	$1.940(3)$			
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	$111.7(2)$	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(6)$	$89.1(1)$	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(2)$	$92.3(1)$	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{O}(6)$	$89.5(2)$	
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$89.7(2)$	$\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{C}(3)$	$129.5(4)$	
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$93.1(2)$	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$126.7(5)$	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$85.8(2)$	$\mathrm{Cu}(2)-\mathrm{O}(3)-\mathrm{C}(3)$	$130.7(4)$	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$176.4(2)$	$\mathrm{Cu}(1)-\mathrm{O}(4)-\mathrm{C}(10)$	$123.5(4)$	
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$164.7(2)$	$\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{O}(5)$	$124.3(6)$	
$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(3)$	$88.2(2)$			

Fig. 1. Molecular structure of the title compound. [Atomic labelling changed in comparison to Haase \& Gehring (1985) and Muhonen, Pajunen \& Hämäläinen (1980) respectively.]

$$
\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]
$$

$\mathrm{Cu}(2)-\mathrm{O}(1)-$ is folded with a dihedral angle $\varphi_{C D}=$ $111 \cdot 2^{\circ}$ defined between the best planc C [deviations (\AA) in parentheses], $\mathrm{Cu}(1)(0.04), \mathrm{O}(2)(-0.07), \mathrm{C}(3)$ $(0.03), \mathrm{Cu}(2)(-0.03), \mathrm{O}(3)(0.03)$ and the plane D, $\mathrm{Cu}(1), \mathrm{O}(1), \mathrm{Cu}(2)$.

Two structural effects are associated with the methanolic oxygen atoms $\mathrm{O}(6), \mathrm{O}\left(6^{\prime}\right)$. (i) The hydrogen bridge $\mathrm{O}(5) \cdots \mathrm{H}(\mathrm{O} 6)-\mathrm{O}(6), \quad \mathrm{O}(5)-\mathrm{O}(6)=$ 2.650 (7) $\AA, \quad \mathrm{O}(5)-\mathrm{H}(\mathrm{O} 6)-\mathrm{O}(6)=175(2)^{\circ}$, stabilizes the folded structure. (ii) The trans angle $\mathrm{O}(2)$ -$\mathrm{Cu}(1)-\mathrm{N}(1)=164 \cdot 7(2)^{\circ}$ is influenced by the $\mathrm{Cu}(1)-\mathrm{O}(6)=2 \cdot 830(5) \AA$ distance as the $\mathrm{O}(6)$ position may be described as the apical position in a square-planar pyramidal $\mathrm{Cu}(1)$ coordination. This correlation is observed within the series of related trinuclear compounds (Gehring, 1990). A smaller $\mathrm{Cu}(1)-\mathrm{O}(6)$ distance leads to a more distorted $\mathrm{Cu}(1)$ basal plane A with smaller angles $\mathrm{O}(2)-\mathrm{Cu}(1)-$ $\mathrm{N}(1)$ while the other trans angle $\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(4)$ remains nearly unchanged at $176 \pm 1^{\circ}$.
Distances and angles within the ligands agree with those found in related compounds. The molecular structure of the 3 -methyl derivative shows no sig-
nificant differences to the unsubstituted analogues mentioned in the Introduction.

Financial support of the Deutsche Forschungsgemeinschaft, Bonn Bad Godesberg, is gratefully acknowledged.

References

Costines, M., Foitzik, J. K. \& Gehring, S. (1984). PLaN. Program for calculation of best planes. Technische Hochschule Darmstadt, Germany.
Gehring, S. (1990). Thesis, Technische Hochschule Darmstadt, Germany.
Gehring, S. \& Haase, W. (1990). Mol. Cryst. Liq. Cryst. 176, 513-522.
Gehring, S., Paulus, H., Haase, W., Bill, E. \& Trautwein, A. X. (1990). Z. Kristallogr. 186, 83-85.

HaAse, W. \& Gehring, S. (1985). J. Chem. Soc. Dalton Trans. pp. 2609-2613.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Muhonen, H., Pajunen, A. \& Hämäläinen, R. (1980). Acta Cryst. B36, 2790-2793.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of a Nickel(II) Complex of the Deprotonated Anion of 3,10-Dimethyl-4,9-diaza-3,9-dodecadiene-2,11-dione Dioxime

By Yun-Ming Wang
Institute of Nuclear Energy Research, PO Box 3, Lung-Tan 32500, Taiwan

and Chit-Yi Cheng, Sue-Lein Wang and Chung-Sun Chung*
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043

(Received 6 March 1990; accepted 6 February 1991)

Abstract

Dimethyl-4,9-diaza-3,9-dodecadi-ene-2,11-dione dioximato($1-$)- $\left.\mu-O, N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}\right]-$ nickel(II) perchlorate, $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right]^{+} . \mathrm{ClO}_{4}^{-}, M_{r}$ $=411 \cdot 5$, triclinic, $P \overline{1}, a=6.533$ (2), $b=10.840$ (3), c $=12.979 \AA, \quad \alpha=103.57$ (3),$\quad \beta=95.76$ (3), $\quad \gamma=$ $103 \cdot 16(2)^{\circ}, \quad V=858 \cdot 5(5) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.592 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $1.33 \mathrm{~mm}^{-1}, F(000)=428, R=0.0440, w R=0.0494$ for 2417 independent reflections at 296 K . An oxime proton is lost from the ligand in forming the complex and the remaining oxime proton forms an intramolecular hydrogen bond between the two oxime oxygens. The $\mathrm{Ni}^{\mathrm{II}}$ atom is in a distorted square

[^2]0108-2701/91/091816-04\$03.00
planar coordination. The average values for the important bond distances are $\mathrm{Ni}-\mathrm{N}$ (oxime) $=1.871$, $\mathrm{Ni}-\mathrm{N}($ imine $)=1.907, \mathrm{O} \cdots \mathrm{O}=2.443 \AA$ for the intramolecular hydrogen bond.

Introduction. It is well established that deprotonated tetradentate diimine dioximes and diamine dioximes coordinate with transition metal ions to form complexes having strong intramolecular hydrogen bonds between cis oxime groups (Wang, Chung, Cheng \& Wang, 1990; Fair \& Schlemper, 1978; Gavel \& Schlemper, 1979; Liss \& Schlemper, 1975). The O‥O distance can be varied either by changing the ligand or by changing the size of the metal ion. The X-ray crystal structures of the complexes of deprotonated
© 1991 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53969 (25 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * To whom correspondence should be addressed.

